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Abstract. The E ⊗ ε Jahn–Teller Hamiltonian in its Bargmann–Fock representation is
transformed by the Birkhoff method into a canonical form in which all regular singularities
between zero and infinity have been removed. The resulting equation is of the Kummer type
and identical to the previously obtained canonical form of the Rabi Hamiltonian (Szopa M and
Ceulemans A 1996J. Math. Phys.37 5402). The isolated exact solutions of theE ⊗ β, E ⊗ ε
and08⊗τ2 Jahn–Teller Hamiltonians are identified as special symmetries of the canonical form.

1. Introduction

TheE⊗ ε Jahn–Teller (JT) Hamiltonian describes the vibronic coupling between a twofold
degenerate electronic level and a pair of degenerate vibrational modes. In 1958 Longuet-
Higginset al [2] carried out the first diagonalization of this Hamiltonian within the adiabatic
approximation. In the present day, with modern computational means, numerical solutions
of this problem may routinely be obtained with any desired degree of accuracy [3].

For some values of the coupling parameter the eigenvalues of the system appear to
be rational numbers, corresponding to intersections with so-called baselines. This was
first noted in numerical work by Moffit and Thorson [4] on the related08 ⊗ τ2 system.
In a remarkable tour de force Judd [5] succeeded in establishing finite-order equations for
determining the strength of the coupling for which the eigenvalue lies on a baseline. Further
progress in the analytical treatment was mainly due to Reiket al [6, 7], who reformulated the
problem in Bargmann–Fock space and conjectured the existence of general exact solutions.

In the present paper we continue to explore the problem in the Bargmann–Fock space,
using a different approach, however. While Reik was looking for natural expansion
functions which incorporate the singularities of the problem, we choose to apply the Birkhoff
transformation method [1, 8] in which all finite singularities are reduced to only one
singularity at the origin. This results in a canonical form of theE ⊗ ε JT Hamiltonian
which appears to be identical to the previously derived canonical form of the Rabi (or
equivalentlyE ⊗ β Jahn–Teller) Hamiltonian [1]. The Juddian isolated exact solutions of
the JT problem and the Kuś isolated exact solutions of the Rabi problem [9] are found to
correspond to resonant cases of the canonical form.

† On leave of absence from: Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice,
Poland.
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2. TheE⊗ε Jahn–Teller Hamiltonian

The Hamiltonian of theE⊗ε Jahn–Teller system describes a two-level fermionic subsystem
coupled to two boson modes:

H =
2∑
i=1

a+i ai + µσ3+
√

2λ[σ+(a1+ a+2 )+ σ−(a+1 + a2)] (1)

wherea+i andai are boson field creation and annihilation operators[
a+i , a

+
j

] = [ai, aj ] = 0
[
ai, a

+
j

] = δi,j (2)

σ± = 1
2(σ1± iσ2) andσ1, σ2, σ3 are Pauli matrices. The parameter 2µ is the level separation

of the fermionic states and
√

2λ is the fermion–boson field coupling constant. We assume
that it is non-trivialλ 6= 0. The boson vacuum state in (1) is shifted to zero energy.

Closely following the analysis of Reik [7] the Hamiltonian (1) is divided into two parts

H = J +H1 (3)

where

J = a+1 a1− a+2 a2+ 1
2σ3 (4)

represents the angular momentum of the system and the remaining part is

H1 = 2a+2 a2+ (µ− 1
2)σ3+

√
2λ[σ+(a1+ a+2 )+ σ−(a+1 + a2)]. (5)

Both parts commute with the full Hamiltonian. The eigenproblem of the angular momentum
part can be easily solved and reads

J |ψ〉j+ 1
2
= (j + 1

2)|ψ〉j+ 1
2

j = 0, 1, 2, . . . (6)

where

|ψ〉j+ 1
2
= (a+1 )jφ1(a

+
1 a
+
2 )|0〉|↑〉 + (a+1 )j+1φ2(a

+
1 a
+
2 )|0〉|↓〉 (7)

is the eigenfunction. Here|0〉 is the vacuum state for both bosons,|↑〉 and|↓〉 are eigenstates
of theσ3 operator andφ1 andφ2 are arbitrary functions (at least analytic). The ansatz in (7)
was proposed by Reik and does not treat the two boson modes on an equal footing. Later
on we will replace it by a more symmetrical form which greatly facilitates further treatment.
Because the operatorsH andJ commute, the functions (7) are also eigenfunctions of the
Hamiltonian (1):

H |ψ〉j+ 1
2
= E|ψ〉j+ 1

2
(8)

and of its componentH1:

H1|ψ〉j+ 1
2
= (E−j− 1

2)|ψ〉j+ 1
2
. (9)

The wavefunctions of theE⊗ε JT system are thus seen to be characterized by half-integral
rotational quantum numbers, which is a direct consequence of the geometrical Berry phase
[8–10]. Consequently, the solution of the stationary Schrödinger equation of the Hamiltonian
can be reduced to an eigenequation (9) ofH1.

In what follows we use the Bargmann–Fock representation of the problem. To do
this, the boson field creation operators are replaced by multiplication operators and the
annihilation operators by differentiation ones:

a+i −→ ξi ai −→ ∂

∂ξi
(10)
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i = 1, 2, with respect to complex variablesξ1 andξ2. The trial eigenfunction (7) is of the
form

|ψ〉j+ 1
2
= (ξ1)

jφ1(ξ)|↑〉 + (ξ1)
j+1φ2(ξ)|↓〉 (11)

whereξ = ξ1 · ξ2. The insertion of (11) into (9) yields a system of two ordinary, linear,
first-order differential equations for the functionsφ1(ξ) andφ2(ξ):

(µ−E+j)φ1(ξ)+ 2ξ
dφ1(ξ)

dξ
+
√

2λ

[
(ξ+j+1)φ2(ξ)+ ξ dφ2(ξ)

dξ

]
= 0

√
2λ

[
φ1(ξ)+ dφ1(ξ)

dξ

]
− (µ+E−j−1)φ2(ξ)+ 2ξ

dφ2(ξ)

dξ
= 0.

(12)

Note that in this form, already obtained by Reik [7], the two variablesξ1 andξ2 exist only
in their product formξ = ξ1 · ξ2.

Solutions of this system describe a quantum mechanical state ofH provided thatφ1(ξ)

andφ1(ξ) belong to the Bargmann–Fock space, i.e. they are complete and normalizable:∫
φi(ξ)φi(ξ) exp(−ξξ) d(Reξ) d(Im ξ) <∞ i = 1, 2. (13)

Reik [7] attempted to solve (12) by a suitable choice of natural expansion functions which
incorporate the singular points of these equations. Here we take a different direction by
introducing a transformation which removes the singular points.

Our first step is to symmetrize the system (12). By means of the substitutionsξ = z2

and

φ1(ξ) = ψ1(z)+ ψ2(z)

2
z−j

φ2(ξ) = ψ1(z)− ψ2(z)

2
z−j−1

(14)

we obtain the symmetrical form of (12):

dψ1(z)

dz
=
(
− 1

2

z
+ E+λ

2+ 1
2

z + λ − λ
)
ψ1(z)+

(
j+ 1

2

z
− µ+j+

1
2

z + λ

)
ψ2(z)

dψ2(z)

dz
=
(
j+ 1

2

z
−µ+j+

1
2

z − λ

)
ψ1(z)+

(
− 1

2

z
+ E +λ

2+ 1
2

z − λ + λ
)
ψ2(z).

(15)

The solutionsψ1(z) and ψ2(z) represent physical states if the correspondingφ1(ξ) and
φ2(ξ) are complete and obey the normalizability condition. The latter means thatψi ◦

√·
(the composition ofψi with the square root) obey (13).

The symmetry of (15) implies that for a given solution
(
ψ1(z)

ψ2(z)

)
the pair

(
ψ2(−z)
ψ1(−z)

)
is also a

solution. In combination with the definition in (14), it follows that the eigenfunctions adopt
a fixed parity with regard to this symmetry which only depends on the angular momentum
quantum numberj :(

ψ1(−z)
ψ2(−z)

)
= (−1)j

(
ψ2(z)

ψ1(z)

)
. (16)

Note that for the unphysical value ofj = − 1
2, which corresponds to a vanishing angular

momentum eigenvalue (6), and forµ = 0 the system (15) becomes uncoupled and can be
solved exactly. The solutions of such a simplified case yield the quantization condition
for E:

E + λ2+ 1
2 = ν (17)
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whereν is a non-negative integer. These quantized values ofE + λ2 correspond to the
celebrated Judd baselines [5].

In the physical case however, we deal with the situation that the coupling termλ of
the Hamiltonian (1) produces regular singularities, which, apart fromz = 0, occur atz = λ
and z = −λ. Moreover, the system (15) has an irregular singularity of rankq + 1 = 1 at
infinity [13].

3. The transformation to a canonical form

To simplify the singularity structure we now transform the system (15) into a canonical form
with only one finite singularity at the origin by applying the Birkhoff theorem as explained
in our previous paper [1]. Expanding coefficients of the system (15) in a Laurent series
and applying equation (14) of [1] we find the canonical form of the eigenproblem under
investigation:

z
d

dz
91(z) =

(
E − λz + λ2

)
91(z)+

(
−µ− 2λa(1)12

)
92(z)

z
d

dz
92(z) =

(
−µ+ 2λa(1)21

)
91(z)+

(
E + λz + λ2

)
92(z)

(18)

wherea(1)r,s are first-order expansion coefficients of the matrix of complex functionsars(z) =∑∞
k=0 a

(k)
rs /z

k, a(0)rs = δrs , which are defined by the linear transformation

ψr(z) =
2∑
s=1

ars(z)9s(z) r = 1, 2 (19)

leading from the symmetric form (15) to the canonical form (18).
In what follows we assume that the solutions of the canonical system (18) have the

same parity properties as the solutions of the symmetrical system (15). It implies that the
transformation matrix functions must be symmetric in the following sense:

aij (z) = a[i+1][j+1](−z) i, j = 1, 2 (20)

where [t ] is by definition 1 for oddt and 2 for event .
Note that in our analysis we do not postulate any form of the transformation matrix;

in fact we do not know it. What we know (by the Birkhoff theorem [8]) is that there
exists a matrix{aij (z)} such that the substitution of (19) in (15) leads to the transformed
system (18). This system depends on the Hamiltonian parametersµ, λ and two constants
a
(1)
12 anda(1)21 . Due to symmetry, equation (20), only one of them, e.g.a

(1)
12 , is independent.

As we show later, apart from the angular momentumj , the solutions of the system can be
labelled by Judd’s baseline quantum numberν, equation (17).

The constanta(1)12 also defines the transformation matrix via the system of recurrence
equations

l∑
i=0

({
a
(l−i)
rk

}{
P
(1−i)
ks

}− {p(−i)rk

}{
a
(l−i)
ks

}) = (l − 1)
{
a(l−1)
rs

}
(21)

where l = 2, 3 . . ., p(k)rs are defined by the expansionprs(z) =
∑0

k=−∞ p
(k)
rs z

k of the
coefficients of the symmetric system (15) andPrs(k) are the polynomial coefficients
Prs(z) =

∑1
k=0P

(k)
rs z

k of the canonical system (18) (the{a(i)rs } and {P (i)rs } with negative
i are zero by definition).
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The important formula establishing the relation between the energy and thea
(1)
12

parameter is the indicial equation

ρ1,2 = E + λ2± A (22)

whereA = µ+ 2λa(1)12 and the index 1 (2) corresponds to+ (−). The necessary condition
for the solutions of (18) to be physical (i.e. corresponding toφi , i = 1, 2 in the Bargmann–
Fock space) is that at least one of the rootsρi of (22) must be a non-negative integer. As
we show later, the integerρ is determined by the quantum numbers of a particular solution.
In a way therefore, determination ofa(1)12 as a function of the system parametersµ, λ and
the quantum numbers is equivalent to the determination of the energy spectrum.

An interesting property of the canonical form of theE ⊗ ε Jahn–Teller eigenproblem
is that the system (18) is identical to that obtained by us for the Rabi Hamiltonian [1].
Consequently, the formal solutions of the two systems are represented by the same functions.
The system (18) can be reduced to a confluent hypergeometric (or Kummer) equation of
second order. The general solutions for91(z) and92(z) are combinations of two functions

91(z) = exp(λz)[C1 z
ρ1

1F1(1+A, 1+2A;−2λz)+ C2 z
ρ2

1F1(1−A, 1−2A;−2λz)]
(23)

92(z) = exp(−λz)[−C1 z
ρ1

1F1(1+A, 1+2A; 2λz)+ C2 z
ρ2

1F1(1−A, 1−2A; 2λz)]
whereC1 andC2 are arbitrary constants and1F1(a, c; z) is the confluent series (Kummer
function) [14].

Note that the Kummer functions are complete and the indicial equation is really the only
criterion for the completeness of the solutions (23). The functions91,2 ◦

√· are normalized
in the sense of (13), which means that the second necessary condition for them to represent
physical states is fulfilled [1]. The sufficient condition for (23) to represent a physical
state is that the correspondingφi(ξ), i = 1, 2, obtained by (19) and (14) belong to the
Bargmann–Fock space. This can be achieved by the proper choice of the parametera

(1)
12 .

Specific cases where this can be done are discussed in the next section.

4. The isolated exact solutions

In this section we examine some specific solutions for the transformation matrix leading to
the exact solutions of the initialE ⊗ ε Jahn–Teller problem.

The choice of a propera(1)12 parameter for a givenµ andλ is not possible in general.
This is because the transformation matrix is determined bya

(1)
12 only via a set of recurrence

relations (21), which in general do not lead to a compact form of this matrix allowing one
to determine whether the corresponding solutions of the initial systemφi , i = 1, 2 belong
to the Bargmann–Fock space.

In some cases, however, the system of recurrence equations (21) can be solved exactly.
These correspond to the assumption, that the expansion of the transformation matrix
coefficients in negative powers ofz terminates. If, for example, we assume that the only
non-vanishing coefficients area(1)ij (i.e. a(2)ij = a(3)ij = · · · = 0) then the system (21) can be
reduced to only four equations:

a
(1)
11 + (2λa(1)12 + 2µ)a(1)12 = νλ
(2λa(1)12 + 2µ)a(1)11 + a(1)12 = −λ(j + µ+ 1

2)

(j + µ+ 1
2)a

(1)
11 + νa(1)12 = −λ(j + µ+ 1

2)

νa
(1)
11 + (j + µ+ 1

2)a
(1)
12 = νλ.

(24)
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The solution of the system (24) shows that all its physical solutions (i.e. corresponding to
j = 0, 1, 2 . . .) lie on the first Juddian lineν = 1. The coupling parameterA is found to
be equal to the total angular momentum,A = j + 1

2, and the transformation matrix is

{
ars(z)

} =


1+ λ
z

1+ (j + µ+ 1
2)

2

1− (j + µ+ 1
2)

2
−2λ

z

j + µ+ 1
2

1− (j + µ+ 1
2)

2

2λ

z

j + µ+ 1
2

1− (j + µ+ 1
2)

2
1− λ

z

1+ (j + µ+ 1
2)

2

1− (j + µ+ 1
2)

2

 . (25)

Simultaneously with the expression (25) the system (24) yields one more additional condition
for λ2, namely

λ2 = (j − µ+ 1
2)(j + µ+ 3

2)(j + µ− 1
2)

4(j + µ+ 1
2)

(26)

which coincides with the intersection formula obtained by Reik [6]. The above constraint
means that the solutions, which can be obtained by (25), are discrete points lying on the
first Juddian lineν = 1, corresponding to arbitrary angular momentumj = 0, 1, 2 . . ., such
that there is a balance betweenλ andµ described by (26). Now we check whether these
solutions represent physical states. The necessary condition, i.e. the indicial equation, yields
ρ1 = 1+ j (becauseA = j + 1

2), which is always a positive integer. The other root is then
found to beρ2 = −j , which, as a negative integer (j = 1, 2, . . .), does not give rise to
a physically acceptable solution; forj = 0 this solution is not acceptable either, since the
Kummer function1F1(

1
2, 0;−2λz) is not defined.

The solution (23), for half-integralA, is therefore one dimensional withC2 = 0. The
explicit formula for the transformation matrix (25) and substitution (14) allow one to find
the solutionsφ1 andφ2 of the initial problem (12) which contains only even powers ofz.
It can further be checked thatφ1(ξ) andφ2(ξ) are complete and normalizable. This is the
sufficient condition for (23) to represent physical states.

In a similar way one can find solutions of the system (21) under the assumption that
the only non-vanishing expansion elements are of first and second order (i.e.a

(3)
ij = a(4)ij =

· · · = 0). The system then reduces to a set of six equations which have solutions along
the second Juddian baselineν = 2. In this caseA = −(j + 1

2) and the second root of the
indicial equation is always a positive integerρ2 = 2+ j . The physical solutions are again
one dimensional and correspond to (23) withC1 = 0. The additional condition forλ and
µ to represent isolated exact solutions for arbitraryj = 1, 2, . . . is

32λ4−
[
(2L− 4M)(4− L2)

L
+ 2(4+ L2+ 4LM)

]
λ2+ 4− L2− (4− L2)M2 = 0 (27)

whereL = j + µ+ 1
2 andM = j − µ+ 1

2. This again coincides with the criterion for the
second intersection line [6].

In this way one can show in general that if the transformation matrix{aij (z)} has a finite
expansion of orderν, ν = 1, 2, . . ., then the system of recurrence equations (21) is finite
of order 2(ν + 1) and the corresponding eigenstates of the Hamiltonian (1) lie on theνth
Juddian baseline. The transformed eigenfunction is one dimensional and is given by (23),
whereC[ν+1] = 0, A = (−1)ν+1(j + 1

2) andρ[ν] = ν + j . Its parity alternates withj in
the same way as the parity of the original functions in (16). The additional condition for
λ andν is in general a polynomial of order 2ν in λ. All these solutions are in agreement
with numerical values found forµ = 0 [5].
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5. Discussion

In this paper it has been shown that both the Rabi and Jahn–Teller systems evolve from
a common canonical form, which is found to be an exactly solvable Kummer equation.
The transformation to the canonical form introduces an additional free parameter,a

(1)
12 or A,

the value of which must be determined by the physical requirements of completeness and
normalizability. A is further linked to the energy by the indicial equation (22). In general
A cannot be evaluated in a closed form, except for isolated cases where the transforming
series expansion terminates. In these casesA is found to be equal to the total angular
momentum of the system

A = ±(j + 1
2) (28)

wherej is the bosonic part of the angular momentum and1
2 refers to the fermionic part.

As shown in our previous paper [1], theE ⊗ β Rabi Hamiltonian with the exact Kuś
solutions [9] corresponds to the rotation-free case withj = − 1

2, and henceA = 0. In this
high-symmetry case the exact solutions form degenerate pairs of opposite parity lying on
integral baselines.

TheE⊗ε Jahn–Teller Hamiltonian with the Juddian exact solutions [5] is characterized
by j = 0, 1, 2, . . . and hence half-integralA values. In this case the indicial equation can
have two integral roots but only one of the associated Kummer functions will describe a
physical state. Therefore there will be no extra degeneracy except for that induced by time
reversal.

For completeness we should also mention the08 ⊗ τ2 Jahn–Teller Hamiltonian [5, 4],
which leads to an entirely analogous treatment, but withj = 1

2,
3
2, . . .. Again solutions are

expected to be one dimensional under the Bargmann–Fock constraints. They will lie on
integral baselines as in the Rabi case.

The analysis thus shows that the exact solutions naturally arise as special solutions of
the canonical form, covering all possible cases where the parameterA adopts half-integral
or integral values. To show the particular nature of these solutions it is instructive to rewrite
the Kummer equation[
z2 d2

dz2
+ (1− 2

(
E + λ2

))
z

d

dz
+
((
E + λ2

)2− A2+ λz − λ2z2
)]
91(z) = 0 (29)

in a ‘gauge’ equivalent form as[
−1

2

d2

dz2
+ A

2− 1
4

2z2
− λ

2z
+ λ

2

2

]
9̂1(z) = 0. (30)

The ‘gauge’ transformation is defined by

91(z) = 9̂1(z) e
∫
A(z) dz (31)

where the ‘gauge’ potential isA(z) = (2(E + λ2) − 1)/2z. The transformation (31)
is not unitary and changes the asymptotic behaviour of the wavefunction; therefore,
following Shifman [15], we use quotation marks to distinguish it from the standard gauge
transformation.

The Kummer equation in the form (30), at least forz real, can be recognized as a
Schr̈odinger equation for a Coulomb potential with a centrifugal barrier. ForA = ±(j + 1

2)

the angular momentum constant of this barrier, which appears asA2 − 1
2 in (30), can at

once be identified as the angular momentum associated with the bosonic part, namely

A2− 1
4 = j (j + 1). (32)
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In this way the isolated exact solutions of the JT Hamiltonians are put in correspondence
with the special symmetries of the canonical form.

In conclusion, we have shown that there exists a matrix transformation that maps the
JT Hamiltonian into an exactly solvable Kummer problem. Whenever the transformation
matrix is finite this mapping offers a simple direct method for obtaining exact solutions of
the initial Hamiltonian. The isolated solutions found in this way are seen to correspond to
special quantizations of the canonical form.

These results are reminiscent of the properties of quasi-exactly solvable systems, that
have recently received much attention [16]. It seems this would imply that the Reik
conjecture is false. However, before such a claim could be validated, one would have
to await a more general theory of quasi-exact solvability in systems of dimension higher
than one.
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